Contribution of the Ade Resistance-Nodulation-Cell Division-Type Efflux Pumps to Fitness and Pathogenesis of Acinetobacter baumannii

نویسندگان

  • Eun-Jeong Yoon
  • Viviane Balloy
  • Laurence Fiette
  • Michel Chignard
  • Patrice Courvalin
  • Catherine Grillot-Courvalin
چکیده

UNLABELLED Overexpression of chromosomal resistance-nodulation-cell division (RND)-type efflux systems with broad substrate specificity contributes to multidrug resistance (MDR) in Acinetobacter baumannii We have shown that modulation of expression of the structural genes for the efflux systems AdeABC and AdeIJK confers MDR and results in numerous alterations of membrane-associated cellular functions, in particular biofilm formation. However, the contribution of these RND pumps to cell fitness and virulence has not yet been studied. The biological cost of an antibiotic resistance mechanism is a key parameter in determining its stability and dissemination. From an entirely sequenced susceptible clinical isolate, we have generated a set of isogenic derivatives having single point mutations resulting in overexpression of each efflux system or with every pump deleted by allelic replacement. We found that overproduction of the pumps results in a significant decrease in fitness of the bacterial host when measured by competition experiments in vitro Fitness and virulence were also evaluated in vivo both in systemic and pulmonary infection models in immunocompetent mice. A diminished competitiveness of the AdeABC-overexpressing mutant was observed only after intraperitoneal inoculation, but not after intranasal inoculation, the latter mimicking the most frequent type of human A. baumannii infection. However, in mice infected intranasally, this mutant was more virulent and stimulated an enhanced neutrophil activation in the lungs. Altogether, these data account for the observation that adeABC overexpression is common in MDR A. baumannii frequently found in ventilator-associated pneumonia. IMPORTANCE Overproduction of the RND AdeABC efflux system is observed with a high incidence in multidrug-resistant Acinetobacter baumannii and results in increased resistance to several antibiotics of choice for the treatment of infections caused by this nosocomial pathogen. It was therefore important to study the biological cost of the overexpression of the adeABC structural operon which is normally tightly regulated. Fitness diminution of an overexpressing mutant detected in vitro and in vivo in a model that mimics sepsis was not observed in a pulmonary infection model in which the mutant was more virulent. This points out that increased virulence can occur independently from prolonged persistence in the infected organ and can account for the elevated incidence of this resistance mechanism in clinical isolates. The study also indicates that transposon libraries will identify only virulence genes that are expressed under physiological conditions but not those that are tightly regulated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بررسی بیان و عملکرد ژن پمپ‌های افلاکس ایزوله‌های مقاوم به چند دارو در اسینتوباکتر بامانی غیرکلونال

Abstract Background: Efflux systems are components of the bacterial membrane that play a role in homeostasis of the cell and extrusion of toxic compounds. Efflux pumps of the resistance nodulation cell division (RND) superfamily, confer multidrug resistance to their host when over-expressed. One of the RND efflux systems, is AdeABC which have been characterized for A. baumannii. Another pump be...

متن کامل

Relative Gene Expression of RND-Type Efflux Pumps in Tigecycline Resistant Acinetobacter Baumannii Isolated from Training Hospitals in Tehran, Iran

Background: Appearance of multi-drug resistance (MDR) Acinetobacter baumannii imposes limitation on antibiotic therapy in patients. Detection of MDR A. baumannii can play a crucial role to prevent MDR strains spreading in hospitals. The aim of this study was determination the efflux pumps gene expression in tigecyclin resistance strains in collected isolates from selected training hospitals in ...

متن کامل

Genome Sequence of a Clinical Strain of Acinetobacter baumannii Belonging to the ST79/PFGE-HUI-1 Clone Lacking the AdeABC (Resistance-Nodulation-Cell Division-Type) Efflux Pump

Increased expression of chromosomal genes for resistance-nodulation-cell division-type efflux systems plays a major role in the multidrug resistance of Acinetobacter baumannii Little is known about the genetic characteristics of clinical strains of Acinetobacter baumannii lacking the AdeABC pump. In this study, we sequenced the genome of clinical strain Ab421 GEIH-2010 (belonging to clone ST79/...

متن کامل

Multidrug resistant Acinetobacter baumannii--the role of AdeABC (RND family) efflux pump in resistance to antibiotics.

Acinetobacter baumannii is an opportunistic pathogen which play the more and more greater role in the pathogenicity of the human. It is often attached with the hospital environment, in which is able easily to survive for many days even in adverse conditions. Acinetobacter baumannii is the species responsible for a serious nosocomial infections, especially in the intensive care units. Option of ...

متن کامل

Revised manuscript AAC 01388 - 10 1 Efflux - Mediated Antibiotic Resistance in Acinetobacter spp . 2 3 4

24 Among Acinetobacter spp., A. baumannii is the most frequently implicated in nosocomial 25 infections, in particular in intensive care units. It was initially thought that multidrug 26 resistance (MDR) in this species was mainly due to horizontal acquisition of resistance genes. 27 However, it has become recently obvious that increased expression of chromosomal genes for 28 efflux systems pla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016